Tag Archives: presentation

Design of the Perfect Trade Mission

In my role at Highview Power, an innovative cleantech company, I was part of British trade missions around the world: specifically to Poland, India, Brazil, and the USA. I also won a spot on a Singapore/Taiwan mission organised by the EU, but attending was later vetoed by management.

Trade missions, when done correctly, can be a valuable way to meet potential clients and partners in a totally new geography. The quality (and therefore usefulness) of these missions varied wildly.

Allow spare time in the schedule

The worst I remember was the trip to India. It was organised by a local partner entity that arranged for us to fly from London for a 4 night stop, speaking at panel events in Delhi, Hyderabad, and Bangalore.

This was far too much travelling as we were required to wake up, attend a conference, then immediately head to the airport to fly to the next city. After the final conference, we immediately headed to the airport to fly straight back to London.

As well as being exhausting, this was not a good idea because there always needs to be sufficient time allocated for side meetings and dinners between delegates. In order to build relationships to close future deals (or even to close a deal on the mission), these side events are essential.

Pre-introduce or screen high-quality delegates

This trade mission, and others I have been on, suffer from the scattergun delusion: the idea that if you get enough people from a certain industry or profession to attend, sooner or later one of them will be useful.

In an ideal world, delegates will be personally invited to attend the trade mission by the organisers based on a list of target prospects given by the trade mission attendees.

Even better, they could be pre-screened for interest/relevance based on a few criteria given to the organisers by the attendees, so that poor quality or low relevance delegates can be filtered out of the event.

The perfect scenario would be to actually introduce the relevant delegate to the attendee before the event so there could be the opportunity to engage in whatever initial due diligence discussions could make a meeting more valuable.

Essentially, anything the trade mission can do to get the prospect further down the Marketing Funnel, the better.

Invite high-ranking dignitaries relevant to the topic

The presence of high-ranking dignitaries, both local and visiting, can help to attract high-ranking members of potential customers and partners to the trade mission event.

They should be highly relevant to the field of the trade mission, for example the Minister of Energy that is responsible for a newly-launched policy on an Energy Mission.

This creates a great opportunity for public-private as well as international dialogue that senior attendees relish. The trade mission I attended in Poland was an excellent example of this.

Product Demonstrations and/or booths

As well as panel debates, allowing the trade mission visitors a short slot to demonstrate or present their offering to the whole event can be a phenomenally useful addition.

A good backup for this is allotting each company a small booth around the venue so they can present to delegates 1-on-1 during breakout sessions.

Secret History of Silicon Valley: Steve Blank

Below is an amazing lecture from Steve Blank on the history of Silicon Valley.

As military funding was a big part of it, the majority of the talk is around the role of electronic warfare in World War II and the Cold War.

Steve’s Secret History site shares the full slide deck and more.

Some interesting highlights from the talk:

  • World War II was the first electronic war – the German air defence even had radar-guided flak guns!
  • The ground-facing radar on Allied bombers that was designed to help identify targets was used by Germany to track them (and so was the radar warning receiver on their tails)
    • This shows the cat-and-mouse game of measures and counter-measures in electronic warfare
  • Allied bomber formations would throw out a cloud of aluminium foil “chaff” to reflect German radar, which was cut to exactly half the wavelength of the signal.
  • Fred Terman of Stanford moved East during the war to run the Harvard Radio Research Lab
  • He hired 11 colleagues from the Lab to join him at Stanford when he returned. Together they made Stanford the “MIT of the West”
  • Heretically for the time, he encouraged faculty to sit on tech company boards and his graduate students to leave and start companies (for example, Hewlett and Packard)
  • The Cold War became an electronics war as well
  • The USA use the moon to pick up reflected Soviet radar signals and map out the locations of the radar bases
  • CIA and NSA would fund big radio dishes for universities like Stanford as a result
  • Shockley came back to Stanford. He was a great researcher and talent spotter but a terrible manager
  • The “Traitorous Eight” left to start Fairchild Semiconductor and a suite of companies formed in the resulting ecosystem
  • The US military “primed the pump” as the first customer for tech entrepreneurship in the Valley.
  • But in the mid-1970s, the US Government slashed capital gains tax and told pension funds they could invest up to 10% of their assets in VC firms.
    • As a result, inflows to VC firms rose by an order of magnitude and Silicon Valley became a hotbed of for-profit innovation

My talk at Hello Tomorrow: The Future of Energy

In November 2016 I had the privilege of being invited to speak an event in Turkey on The Future of Energy.

It was run by Hello Tomorrow, an NGO that aims to empower early-stage science startups, and coordinated by my ex-IEA colleague, Timur Topalgoekceli, at the Sabanci Centre in Istanbul.

It was very exciting to see such a high-level panel of speakers from the Turkish public and private sector, showing that the clean energy revolution has a dynamic future in Turkey.

I was one of a group of innovative energy technology startups that were invited to present to the conference to spark debate about what the future of the energy system could look like, and how could Turkey position itself to capitalise on this and influence the upcoming change.

My talk starts from 59:00 minutes into this video. To be honest, I’m not happy with my performance as it was quite a different stage to the ones I’m used to presenting on!

It was very much a TED-style podium with no lecture to hide behind, so my nerves get the better of me during the talk.

No matter: it was a great learning experience and it was a fantastic event to meet the movers and shakers of the Istanbul clean energy scene.

Winners of Nesta’s Dynamic Demand Challenge announced

The winners of Nesta’s Dynamic Demand Challenge have been announced at the Finalists Awards Presentation last week.

The winners were Demand Shaper of Exergy Devices with Hestia, a “smart home controller specifically designed for electrically–heated homes, and could save these households over £200 per year. Using Demand Shaper technology, Hestia implements a time–shifting algorithm to subtly alter domestic heating schedules, modulating electricity demand according to the needs of electricity suppliers, or National Grid“.

Hestia Nesta dynamic demand Challenge winners

Hestia (aka Exergy Devices) received their award: Winners of the Nesta Dynamic Demand Challenge

To be perfectly honest, at the Hackathon I didn’t fully grasp understand their offering, as you can see from my previous post on the topic.  However, I should have guessed they would do well as the team have invested significant efforts in their academic research into this field, and already have a history of successful and profitable IP generation for the smart home market.

The focus on an initial target market (or “sandbox”) of electrically heated homes will lead to some impressive benefits:

Hestia could reduce energy consumption by 25% thanks to subtle alterations in domestic heating schedules which match the homeowner’s needs with the supplier’s capacity. The technology offers a peak demand shifting capacity of 1.7 GW if deployed across the UK and has the potential to reduce individual homeowners’ CO2 emissions by around 3 tonnes per annum and save around £200 a year.”

Hestia have won £50,000 in funding on top of the significant benefits and funding they have received from the Challenge already. Congratulations to Dr Peter Boait and his team!

I was also delighted to see that my favourite finalist, Upside, won a place on the Climate-KIC Accelerator which will see them receive €25,000 in funding and “continued support to develop their business”. In addition to this, Upside has recently confirmed their successful bid for funding from the Technology Strategy Board’s Localised Energy Systems Competition, in consortium with Siemens, Sharp Labs, Tempus Energy and the University of Manchester. Graham and his team now have a great combination of validation, investment, and partner support to take the idea forward. Well done guys!

This brochure from Nesta contains information on all the finalists: their progress to date, their future plans and any investment opportunities for those that want to support their work. On a side note, it’s nice to see my PowerCube Tariff idea get a little shoutout in there:

“An ultra low–priced electricity tariff, with a capacity ceiling that is hard wired into consumers’ electricity supply. A smart meter would be installed in house, including a switch, which will feed from the capacity limit that is fed from the smart meter. The Powercube will notify the user via green, amber or red lights and also via text message when they are utilising a surge of electricity. If a large amount of electricity is used at one time, the house’s full electricity supply will cut out for 60 seconds as a warning/incentive for the user to be more wary of their activity.”

I should add that paragraph was not written by me… 🙂

It was exciting to see how far the ideas have come in the 12 months of the Challenge and I’m optimistic for the potential environmental benefits that will come out of this successful initiative. I recommend this as a model project for all those seeking to stimulate smart grid entrepreneurship.

PowerCube: a capacity tariff to fight UK fuel poverty

During last year’s Dynamic Demand Challenge Hackathon, the organisers asked me to form an impromptu team with another Roving Hacker. Together we designed a “capacity tariff” aimed at those living in fuel poverty (an estimated 3.5m UK households).

Our idea, PowerCube, is to limit the power that can be drawn by a household in exchange for a deep discount (50% or more) for the price per unit of electricity (kWh) paid by the consumer. This would be achieved by installing a device such as a relay switch on the main incoming power supply that is triggered by the smart meter when the power reaches a certain predefined level. Our pitch presentation at the end of the 36 hour Hackathon can be found here:

Benefits of the idea

The benefits of this tariff are many. Customers would benefit from reducing their outgoings on expensive energy, utilities would eliminate the need to buy electric at peak times when it is expensive by shifting large amounts of demand to off-peak times, and the environment would benefit as it would reduce the need for GHG-intensive peaking plants powered by fossil fuels like gas and oil.

Fuel poor customers often have poor credit history and therefore frequently receive their electricity via a pre-paid meter, notorious for their scandalously high prices. Because ‘Fuel poor’ householders are often in a situation where they are faced with the “heat or eat” scenario, our belief is that the 50% discount of the PowerCube tariff is something that would get real traction.

Weaknesses of the idea

Capacity tariffs are not a new concept and have been trialled on the continent before, to mixed levels of success. We believe that targeting them at the energy poor section of the market, for whom energy prices are a real and priority problem, will give the concept a new lease of life as this application will add real value to this particular market segment.

The PowerCube tariff idea relies on a physical device to give a visual/auditory signal to indicate when the household is close to its limit. Ensuring that this signal is simple to understand and able to inform action is vital.

It is also important to realise that the whole concept of a capacity tariff means that people will need to learn the relative power demands of their devices, which could prove difficult for consumers who are not very tech-savvy. However, a counter argument to this is the fact that non-commercial sailors intuitively learn how to ration their power use on a boat to stay within the fixed capacity limits of their vessel’s battery supply.

Finally, the level of the capacity ceiling will probably need to be fixed and chosen very carefully, as it will be too confusing/undesirable for customers to live in a situation where their allocated capacity ceiling is changing unpredictably. It also might need to be set on an individual basis, which could prove expensive if not an automated solution is not developed well.

Opportunities for the idea

The tariff would provide consumers with savings of around 50% from their electricity bills, which is a significant amount of money (around 5% of their annual income when using the old definition of fuel poverty).

It would also allow the UK to shave a significant amount of peak load if designed correctly. For example, if 5% of the UK’s energy poor households (3.5m*0.05=175,000) were to sign up and reduce their peak demand by 2kW it would be a 350MW saving, equivalent to an average UK natural gas power plant gas.

Threats to the idea

One big threat to this would be a change in the demand of a household, or a consumer switching tariffs after receiving the PowerCube device.

Another threat would be weaknesses in the UK smart meter roll-out, such as low up-take or hardware that is incompatible with the infrastructure of this tariff offering.